用户
 找回密码
 立即注册
搜索

1.图文版本全面讲解电脑主板2.电脑电源接口图详解3.如何看主板供电

  [复制链接]

459

主题

5513

帖子

3万

积分

游客

积分
35945
发表于 2009-7-13 22:25:58
本帖最后由 hhh0503 于 2010-1-5 18:06 编辑


时钟信号首先设定了一个基准,我们可以用它来确定其它信号的宽度,另外时钟信号能够保证收发数据双方的同步。对于CPU而言,时钟信号作为基准,CPU内部的所有信号处理都要以它作为标尺,这样它就确定CPU指令的执行速度。    

  时钟信号频率的担任,会使所有数据传送的速度加快,并且提高了CPU处理数据的速度,这就是我们为什么超频可以提高机器速度的原因。要产生主板上的时钟信号,那就需要专门的信号发生器,也称为频率发生器。
  但是主板电路由多个部分组成,每个部分完成不同的功能,而各个部分由于存在自己的独立的传输协议、规范、标准,因此它们正常工作的时钟频率也有所不同,如CPU的FSB可达上百兆,I/O口的时钟频率为24MHz,USB的时钟频率为48MHz,因此这么多组的频率输出,不可能单独设计,所以主板上都采用专用的频率发生器芯片来控制。
  

  频率发生器芯片的型号非常繁多,其性能也各有差异,但是基本原理是相似的。例如ICS 950224AF时钟频率发生器,是在I845PE/GE的主板上得到普遍采用时钟频率发生器,通过BIOS内建的“AGP/PCI频率锁定”功能,能够保证在任何时钟频率之下提供正确的PCI/AGP分频,有了起提供的这“AGP/PCI频率锁定”功能,使用多高的系统时钟都不用担心硬盘里面精贵的数据了,也不用担心显卡、声卡等的安全了,超频,只取决于CPU和内存的品质而已了。
  二、总结
  最后再让我们通过一张详细的大图来对主板来个彻底注释。
  


1是整合音效芯片,2是I/O控制芯片,3是光驱音源插座,4是外接音源辅助插座,5是SPDIF插座,6是USB插头,7是机箱被开启接头,8是PCI插槽,9是AGP4X插槽,10是机箱前端通用USB接口,11是BIOS,12是机箱面板接头,13是南桥芯片,14是IDE1插口,15是IDE2插口,16是电源指示灯接头,17是清除CMOS记忆跳线,18是风扇电源插座,19是电池,20是软驱插座,21是ATX电源插座,22是内存插槽,23是风扇电源插座,24是北桥芯片,25是CPU风扇支架,26是CPU插座,27是12VATX电源插座,28是第二组音源插座,29是PS/2键盘及鼠标插座,30是USB插座,31是并串口,32是游戏控制器及音源插座,33是SUP_CEN插座。
  主板是整个计算机的中枢,所有部件及外设都是通过它与处理器连接在一起,并进行通信,然后由处理器发出相应的操作指令,执行相应的操作,所以了解的主板结构对每一位学电脑,特别是学电脑维修的人员来说是非常重要的。很难想象一个连主板基本上分几个部分、每部分什么作用都分不清的人可以顺利地维修电脑。本文笔者就以一款华硕最新800MHz
  FSB
  P4主板带各位来具体洞察主板的五脏六腑。
  为了便于读者有一个真实的感性认识,现以一块目前最新主板——华硕的P4P800-Deluxe主板来介绍,它支持最新的Intel
  800MHz FSB,如图1所示,为了便于对照学习,已对主板中的各主要部分进行了标注。
  

  图1
  主板结构从大体上来分的话,可以分为以下几个部分(几乎每一块同档主板结构都基本一样):
  1.
  处理插座:
  这自然是用来安装处理器(CPU)的。处理器插座的结构要根据相应主板所采用的处理器架构来具体决定。目前主要有两种处理器架构,即Socket和Slot。前者是在处理器芯片底部四周分布许多插针,通过这些针来与处理器插座接触,如图2左边所示的是Socket处理器插座,右边所示是Socket处理器背面图。采用这种处理器架构的主要有Intel奔腾处理器、Socket
  7、PⅢ和赛扬处理器的Socket 370、P4处理器的Socket 423和Socket 478;AMD处理器K6-2所用的Socket
  7、Athlon系列处理器用的Socket
  462、最新Hammer处理器系列处理器也是用Socket架构,目前它可算是一种主流处理器架构,也是未来的发展方向。这么多Socke架构,往往不同的只是插针数及内部电路不同,外观基本一样。它有一个手柄,压下后处理器插针就可以与插座很好的接触。
  注意这种架构的处理器在插入主板处理器插座时要注意方向,只有一个方向可以插入,要对准处理器与处理器插座的缺口位,千万别插反了,强行插入会把插针弄弯,甚至折断了。
  另一种处理器架构就是Slot架构,它是属于单边接触型,通过金手指与主板处理器插槽接触,就像PCI板卡一样,在早期的PⅡ、PⅢ处理器中曾用到,Intel把它称之为“Slot
  1”。AMD也过这种架构,称之为“Slot A”。两者不同的也只是具体接触边数量和内部电路有所区别,外观基本一样。如图3所示的左图是华硕的一款支持Slot 1
  PⅢ处理器的主板,右边图所示的是Slot
  1架构的Intel处理器。要注意这种处理器的安装也有方向的,通常也只能有一个方向可以安装,类似于内存的安装,主要是看准缺口。
  

  图3
  说到处理器,就不能不说处理器的两个基本参数:(1)处理器主频(Frequency),也俗称“处理器速度”(Speed);(2)前端系统总线(Front
  System
  Bus,FSB)。前者是指处理器的实际工作频率,也即运行速度,就是指处理器的主频,如我们常说的2.6G\3.0G\3.06G等都是指处理器的主频,在一定程度上来说处理器的主频决定了处理器的性能,所以Intel在近两年利用它的处理器架构优势拼命拉开与AMD
  差距就是这个原因。但也不是绝对的,处理器的综合性能还受许多因素制约,如缓存大小、总线频率等。
  后者是指处理器总线的工作频率,它与处理器的核心频率相关。因自Intel
  P4处理器以来,在同一时间内,处理器可以在一个周期内的上升、下降沿各执行2次操作指令,所以它的总线频率就是核心频率的4倍。目前最快的核心频率为200MHz,对应的总线频率就为800MHz。533MH
  z和400MHz总线的核心频率对应为“166MHz”和“100MHz”。
  目前计算机处理器市场中主要是Intel和AMD,在主频和总线频率上目前仍是由Intel在引领着市场潮流和方向,Intel的P4极限频率处理器800MHz
  FSB
  3.2GHz也于6月23号正式发布,而AMD目前的最高主频标称值虽也为“3200”,但实际频率中有2.2GHz。在总线频Intel在今年初就推出了800MHz的FSB,AMD的Operation也是800MHz
  FSB,但是其桌面版Athlon 64按计划要等到今年9月30号。
  2.
  芯片组
  芯片组是主板的核心,它对主板性能起决定性作用。正因如此,所以在新规格处理器推出之时必定会相应的主板芯片组同步推出,它是与处理器保持同步的。
  主板芯片组主要分两部分,分别由一块单独的芯片负责,这两块芯片就是通常所说的南桥和北桥了。
  图1中“3”所示位置是主板北桥芯片位置,图中是加了散热器,所以看不到北桥芯片。与之对应的就是如图1中标注为“14”的南桥芯片。通常北桥芯片是离处理器最近的一块芯片,这主要是考虑到北桥芯片与处理器之间的通信最密切,为了提高通信性能而缩短传输距离。南桥芯片离处理器比较远,因为它所连接的I/O总线较多,离处理器远一点有利于布线。图1所示主板中的南桥芯片如图4所示。
  

  图4
  如图5所示的是Intel最新的i875P芯片组结构图,其它主板芯片组基本方框结构类似,不同的只是南、北桥芯片、连接的控制器及其互相连接的总线技术等。图中的82875P芯片就是北桥芯片,它直接与P4处理器相连;而ICH5芯片则是南桥芯片,它不与处理器直接相连,而是通过Intel的集线器结构(Intel
  Hub
  Architecture)与北桥芯片相连。由图中可以看出它们各自的主要功能。南桥芯片负责I/O总线之间的通信,如PCI总线、USB、LAN、ATA、SATA等,这些技术一般相对来说比较稳定,所以不同芯片组中可能南桥芯片是一样的,不同的只是北桥芯片。而北桥芯片主要负责内存了控制器、AGP图形卡与处理器之间的通信,因为内存标准与处理器一样变化比较频繁,所以不同芯片组中北桥芯片是肯定不同的,当然这并不是说所采用的内存技术就完全不一样,而是不同的芯片组北桥芯片间肯定在一些地方有差别。有的芯片组只有一个单芯片,即只有南桥芯片,北桥芯片功能集成在处理器中。
  

  图5
  3. 内存插槽
  内存插槽当然是用来插入内存的,它也是采用金手指接触法与内存条的金手指接触。俗称为“RAM
  DIMM”。如图1中标注为“2”的就是4条内存插槽。注意不同的内存,内存插槽的结构也有所区别,从外观上来看主要体现在长度上的区别。目前主要有两种内存,一种是168线的SD内存,也就是说它有168个与插槽接触点,两面各84个金手指接触点;另一种就是现在主流的DDR内存,它是184线的。因为结构及电气性能(主要是指电压)都不同,所以两者不能通用。如图6所示上图是图1中标注为“2”部分的放大图。
  

  图6
  从图中可以看出,华硕的这款支持800MHz
  FSB的主板中,4条内存插槽用两种不同颜色区分(蓝色和黑色),这主要是因为最新的800MHz
  FSB处理器支持双通道DDR内存,而要实现双通道必须成对地配备内存,用不同颜色区分就更加方便用户配置双通道,只需要将两条完全一样的DDR内存插入到同一颜色的内存插槽中即可。现在几乎所有支持双通道内存的主板都采用这样的颜色标注方法。注意插入内存时也要注意方向,并不是随便那个方向,可以先拿内存条与对应的内存条插槽比一下,看内存条的缺口位是否与插槽的凸起位是否吻合,否则强行插错后就会引起内存烧毁。通常正确插好后,内存固定得非常牢固,并且插槽两边的固定耳会准确地卡住内存的相应缺口上,如图6下图所示。
  4.
  PCI和AGP插槽
  因为目前的主要内置板卡基本上都是采用PCI总线接口的,所以在主板当中插槽最多的肯定就是PCI,如图1所示主板中标注为“13”的就是PCI插槽,它通常采用乳白色。在这块主板中有5条PCI插槽,通常最少也有3条。原来一些计算机中还保留有ISA插槽,但随着ISA接口的外设日趋淘汰,现在新的主板上基本上都没有ISA插槽,但是也有例外,超微竟然在i875P芯片组主板中推出了3条ISA插槽,如图7所示。这样的复古行为到底有多少人领情真是很难预料。ISA插槽通常采用黑色,它比PCI接口插槽要长些,参见图7。
  

  图7  在目前来说采用PCI总线接口的板卡主要有声卡、网卡、内置Modem、内置ADSL
  Modem等,以前的显卡也主要是PCI接口的。要注意同一主板上这么多PCI插槽,都是通用的,可以随便选择一个未用的插上声卡、网卡或者内置Modem板卡,不过最好间距均衡一些,以便更好地散热。
  说到PCI,就不能不说AGP总线接口了,它是专门从PCI接口中分离出来的,主要针对图形显示方面进行优化,专门用于图形显示卡。所以现在的显卡基本上都是AGP接口的。AGP卡又称“图形加速卡”。
  AGP标准也经过了几年的发展,从最初的AGP
  1.0、AGP2.0 ,发展到现在的AGP 3.0,如果按倍速来区分的话,主要经历了AGP 1X、AGP 2X、AGP 4X、AGP
  PRO,目前最新片版本就是AGP 3.0,即AGP 8X。AGP 8X的传输速率可达到2.1GB/s,是AGP
  4X传输速度的两倍。AGP插槽在如图1中的位置就是“12”。
  AGP插槽通常都是棕色(以上三种接口用不同颜色区分的目的就是为了便于用户识别),还有一点需要注意的是它不与PCI、ISA插槽处于同一水平位置,而是内进一些,这使得PCI、ISA卡不可能插得进去当然AGP插槽结构也与PCI、ISA完全不同,根本不可能插错的。
  这里要说明的一点就是这里所说的ISA、PCI和AGP都是在台式机中才可见到的,在笔记本电脑中,由于空间的限制不可能像台式机主板那样留样那么大条的插槽,而是采用一种专用的微型总线接口——PCMCIA,这种接口非常精细,占用空间小,它也主要是应用于网卡、Modem板卡之类,如图8所示的就是一款PCMCIA网卡,从图中可以清楚地看出这种总线接口的外观,因为这种结构的特殊性,所以要与其它设备连接的话(如电话线、网线等),都需要一条转接线。
  

  图8
  最后介绍一下最新的接口标准,那就是PCI-Express,它原来的名称为“3GIO”,是由Intel提出的,很明显Intel的意思是它代表着下一代I/O接口标准。交由PCI-SIG(PCI特殊兴趣组织)认证发布后才改名为“PCI-Express”。这个新标准将全面取代现行的PCI和AGP,最终实现总线标准的统一。它的主要优势就是数据传输速率高,目前最高可达到10GB/s以上,而且还有相当大的发展潜力。当然要实现全面取代PCI和AGP也需要一个相当长的过程,目前能支持PCI-Express的芯片组主要是Intel的i875P,到目前为止几乎没有一款主板提供对它的支持。
  5.
  硬盘接口
  硬盘接口当然是用来与硬盘进行连接的。目前主要有两种完全不同的硬盘接口标准,一种就是传统的并行ATA标准,也称IDE接口。另一种是最新的串行ATA,又称为“SATA”。两者的最根本区别当然还是传输速率,产行ATA的最新版本为ATA/133,它的传输数据为133MB/s,而SATA的第一版SATA
  1.0的传输速率就可达到150MB/s,据说第二版、第三版传输速率分别可达到300MB/s、600MB/s,是传统并行ATA所无法达到的。
  并行ATA自ATA
  66版后就开始采用80芯40线的数据线,而串行SATA只需要15芯4线即可。数据线数量可大减少,这样一则更加有利于标准的继续发展,再则数据线减少后功耗自然就降下来了,同时还大大方便安装等。如图1所示“15”为传统并行ATA,即IDE接口,“16”所示的是串行SATA接口。如图9所示就是图1中相应部位的放大图。从放大图中可以更清楚地看清楚两种硬盘接口结构。注意这两种接口数据线都不能随便插,是有一定方向的,还好都有相应避免插错的措施,如在并行ATA数据线的一边涂有红边,另外有一个卡位,IDE插槽也有一个卡,对准后才算正确。
  

  图9
  SATA也一样,它是“L”型的,更是只有一个方向可以插入。
  说到硬盘接口,顺便也介绍一下软驱接口,因为现在来说软驱仍是计算机的基本配置之一,还没有那一种设备能全面取代软驱,尽管目前来说软驱是越来越少人用。
  软驱在主板上的接口位置如图1所示的“17”号。
  6.
  电源接口
  [/hide]

  主板上的各部件要正常工作,就必须提供各种直流电源,这电源的提供是由交流电源经过整流、滤波后,由各路分离电路提供,然后经过相应的插头插入到计算机主板电源插座和各设备电源接口。如图1所示的“18”号位置就是主板上的电源插座。以前电源是采用AT结构的,AT电源是由P8和P9两组接口组成,每个接口分别有六个针脚,支持+5.0V,+12V,-5V,-12V电压,它不支持+3.3V电压。主板AT电源插座参见图10左图所示,而AT电源参见图11。
  ATX与AT结构电源的最明显区别就是ATX电源在关机后,主板上的其中一路5V电源是不会断开的,除非拨了电源插头。这样的好处就是方便了远程唤醒之类的远程开机操作,通过软件就可以使得整个计算机在电源开机着凉的情况下开启系统,另外还增加3.3V低电压输出。目前的P4电源还有一个特别之处就是它不仅是采用ATX电源,而且还提供了一个4线12V电源,参见图10右图所示。ATX电源参见图11。
  

  图10
  

  图11
  7.
  外设接口
  因为计算机中的外设都是通过主板进行连接的,所以在一块主板中会存在各种各样的外设接口,如键盘、鼠标接口,打印机接口、USB接口和IEEE
  1394火线接口、网线接口,以及音视频输出/输入接口等。这部分接口在图1中的位置是从“4~11”,这部分放大图如图12所示。
  

  图12
  在如图12中的“4”号位置是键盘和鼠标接口,它们的外观结构是一样的,但是不能用错。为了便于识别,通常以不同的颜色来区分,绿色的这个接口为鼠标接口,而紫色的这个为键盘接口。以前在586时代,键盘接口为大的圆口,而鼠标通常使用如图12“6”号位置的COM口,那时的电脑的COM口通常至少有2个。所以现在购买键盘和鼠标时一定要注意,以免买回来的不适合主板接口类型。通常为了区分,在购买键盘中以“大口”和“小口”来说明,而鼠标则以“圆口”和“扁口”来区分。
  图12中的“5”号位置是并行接口,通常用于老式的并行打印机连接,也有一些老式游戏设备采用这种接口,目前比较少用,主要是因为它的传输速率较慢,不适合当今数据传输发展需求,正在被USB或IEEE
  1394接口所取代。
  图12中的“6”号位置为串行COM口,这在前面已经介绍。它主要是用于以前的扁口鼠标、Modem以及其它串口通信设备,它的不足之处也是数据传输速率低,也将被USB或IEEE
  1394接口所取代。
  图12中的“7”号和“9”号位置都是USB接口。它也是一种串行接口,目前最新的标准是2.0版,理论传输速率可达480MB/s。目前许多上设都采用这种设备接口,如Modem、打印机、扫描仪、数码相机等。它的优点就是数据传输速率高、支持即插即用、支持热拨插、无需专用电源、支持多设备无PC独立连接等。
  图12中的“8”号位置是IEEE
  1394接口,目前最新版本仍为IEEE 1394 95a版,最高传输速率为400MB/s,但它的IEEE 1394
  b版将达到1.6GB/s的传输速率。它与USB类似,它也支持即插即用、热拨插、多设备无PC连接等。由于它的标准使用费比较高,目前仍受到许多限制,只是在一些高档设备中应用普遍,如数码相机、高档扫描仪等。
  图12中的“10”号位置是指双绞以太网线接口,也称之为“RJ-45接口”。这要主板集成了网卡才会提供的,它是用于网络连接的双绞网线与主板中集成的网卡进行连接。
  图12中的“11”号位置是指声卡输入/输出接口,这也要在主板集成了声卡后才提供的,不过现在的主板一般都集成声卡,所以通常在主板上都可以看到这3个接口。常用的只有2个,那就是输入和输入出接口。通常也是用颜色来区分,最下面红色的那个为输出接口,接音箱、耳机等音频输入设备,而最上面的那个浅蓝色的为音频输入接口,用于连接麦克风、话筒之类音频外设。
  好了,介绍了以上这些后,主板的基本结构就介绍完了。当然主板上还有许多组件,如BIOS芯片、CMOS电池、跳线开关(DIP,有的主板有,有的没有)、功能芯片(声卡、网卡,甚至Modem芯片等)等等,这些都不是最主要的,相对来说比较简单,而且并不是每块主板都有这些全部,所以在此就作多介绍了。

99.JPG (35.77 KB, 下载次数: 1216)

99.JPG
使用道具 举报 回复
发表于 2009-7-13 23:06:37
本帖最后由 hhh0503 于 2010-1-5 18:06 编辑

新鲜出炉的东西,发出来让大家看看,不知道对大家有没有作用



[/hide]
使用道具 举报 回复 支持 反对
发表于 2009-7-13 23:16:17
本帖最后由 hhh0503 于 2010-1-5 18:07 编辑

如何看主板供电


如果我们想掌握主板质量就必须深入了解主板供电电路,它负责电源电压——即+ 12v -并转化为CPU所需的适当电压,内存,芯片和其他电路的供给。接下来,我们将更深入了解供电模块,如何鉴别该电路,它是如何工作的,最常见的元件以及如何确定优质部件。

想了解整个主板的质量和使用寿命,判断供电模块的质量是最好的途径之一。一个好的供电模块输出将不会有任何的电压波动或杂波,其提供了CPU和其它部件干净和平稳的电压。一个差的供电模块可以导致电压波动及杂波,乃致故障如电脑重启、死机、声名狼藉的的蓝屏。 如果该电路采用劣质的铝电解电容,它们将泄漏,鼓胀甚至爆炸。其在主板电路中往往是易损件。而一个高质量供电模块电路可以确保你有一个稳定的系统,经久耐用。

供电电路很容易识别。因为它是唯一采用电感(线圈)的主板电路,电感附近一般就能找到供电模块。通常供电模块环绕在CPU四周;不过你会发现一些电感散布在主板上,通常靠近内存和临近南桥芯片,同样的他们为这些组件提供所需电压。


图1:供电模块的电路。
解释工作原理前,先让让你熟悉供电模块的主要部件。
1.认识一下主要元件
供电模块的主要元件,前面已提到的,1电感(可以由两种材料组成,铁芯或铁素体)、2.晶体管、3.电容(好的主板将提供耐久的铝电解电容)。
晶体管供电模块电路用称为MOSFET(金属氧化物半导体场效应晶体管) 的技术所制造,人们简称为“MOSFET”。有些主板来用被动冷却 – 散热器以冷却“MOSFET”。还有另一个非常重要的元件称为“PWM”控制器,以及同样设计精良细小的“MOSFET driver”。接下来将解释他们的功用。


图2:供电模块的特写  

图3:主板上的被动冷却方式:散热器
2.现在让我们深入介绍每个元件
如前所述,你可以找到两种用于供电模块的电感: 铁芯或铁素体。相对于铁芯电感,铁素体电感功率损耗更低:据技嘉称低了25%(技嘉在主板界的权威地位可见一斑,后面还会提到),较低的电磁干扰和更好的抗锈性。两者之间很容易区分: 铁芯电感通常是“开放”的,你可以看到里面有一个厚实的铜制线圈;而铁氧体电感是“闭合”的,通常上面有一个字母R打头的标志。在图四、图五可比较出他们之间的差别。但是铁氧体电感也有一个例外,其大又圆而且是“开放”的,如图6。这种铁氧体扼流圈是很容易识别的,因为它的铁芯是横置的。
供电模块中还有一种概念称之为“相位”。是不是有点糊涂,别担心,我们将详细解释。  

图四:铁电感。  

图五:铁氧体电感。  

图六:铁氧体电感的特例。
2.现在让我们深入介绍每个元件(续)
尽管所有主板供电模块都使用MOSFET,但其中有好有坏。好的MOSFET的开关电阻较低–该参数称之为“DPS”,发热量少(相对于传统MOSFET少16%的热量,又是技嘉所言),体积小于传统MOSFET。有一个简单的方法来区分两,传统的MOSFET有三条引脚,中心的引脚通常被低断而悬空,低阻的MOSFET有四个或更多的引脚且都焊接到主板上。比较图7号和图8你可以看到两者的区别。
供电模块一般每相位有两个MOSFET。而便宜的主板只使用一个加强的MOSFET,也有每相位使用三个MOSFET的。因此计算相位数量最好的办法是通过数电感,而不是数MOSFET。  

图7:传统的MOSFET。  

图8:低阻MOSFET。
用于供电模块电路的电容可以分为传统的电解质类型电容或固态铝电容,我们已经展示了他们之间的差异,对照图2。固态铝电容比普通的要好,因为它们不易膨胀或泄漏。如果你的主板为正规厂商生产(暗指山寨货,老外也知道?),你应该会发现他们的制造商。日产电容的传统就是防鼓胀、泄漏、爆炸(三防?小日本的东西名声在外啊)。我们已经发表了一份详细的讲解如何鉴别日产电容(国内假货太多,我脸上挂不住了。。。)
每个电压输出是通过一个集成电路称为PWM控制器控制的。如为为中央处理器、记忆、芯片组等(PWM控制器能控制两个独立的电压输出)。如果你环顾整个CPU插座,你应该能够找到给CPU供电的PWM控制器,见图2和图9。  

图9WM控制器。
最后,我们有一个较小的集成电路称为MOSFET driver。供电模块将用一MOSFET驱动每相位,所以每个driver驱动两个MOSFET。便宜主板会以附加的MOSFET替代driver,所以这种设计的主板,每相位有三个MOSFET,不像往常一样有两个。  

图10:MOSFET driver。

3.相位

供电模块的电源电路的工作中有几个平行提供相同的输出电压-特别的指CPU电压。然而,他们在不同一时间工作,因此命名为“相位”。我们将详细地解释一下其如何工作,所以不要害怕(老外挺可爱)。就像很多厂商和爱好者讨论主板的供电相数问题,我们希望引申这一主题。
咱们以CPU供电模块为例。如果该电路具有两个相位,每个相位将操作50%的时间以产生CPU电压。如果这种相同的电路是由三个相位,每个相位将工作33.3%时间;四个相位,每个相位将会占25%。有六个相位,每个相位将工作16.6%的时间。以此类推。
供电模块电路有更多的相位有几个优点。最明显的是,这时MOSFET负载更低,延长了使用寿命,同时降低这些部件工作温度。另一个好处是,多相位通常的输出电压更稳定和较少紊压。
添加更多的相位需要增加更多的部件,它会增加主板成本。廉价的主板则尽量减少相位。
非常重要的是,当厂商说主板有六相供电时,是指CPU供电模块。
每一个电压相位使用一个电感,两个或三个MOSFET,一个或多个电解电容和一个MOSFET driver-低端主板里这最后的组件可以被MOSFET所替代。正如你所看到的,组件的数量不会一成不变。目前唯一最好的计算相数方法是数电感。 例如,在图11(图表1和2)有三个相位。  

图11:相位。
但有一个例外。有一些主板芯片组、存储器的供电电感位于CPU附近,单纯依靠数电感来判断供电相数就不准了。下图:虽然看上去有四相,但它是三相的,就像仅有的三个相位被用来产生CPU电压;在这主板第四相位是用来产生内存的电压。我们要教你如何在一秒内得到准确的相位数。


图12:主板和三个相位,而不是你假定的四相。
在主板背面的四个电感中一个较远的电感应该被忽略。在图11你能看到主板CPU供电模块中的电感是同极的… 因为同相内所有电感产生相同电平,只有连接在一起的应该被计算。这可以通过敷铜面看出。在图13我们展示了电感被焊在一起。图12中正如你所看到的,只有三个电感连接到一起,第四个电感去向内存插槽。


图13:正确的计数电感。
最后一个例子是我们想带你见识一下10相供电的高档主板(见图)。去MOSET上掉精美的散热器。


如图14:非常高端主板和10个相位。
现在,你知道如何正确识别和计数供电模块的相位,这一次,让我们来解释供电模块电路是如何工作的。
4.它是如何工作的
供电模块电路从ATX12V EPS12V得到+ 12v电压,转换给(中央处理器,存储器、芯片组,等等)。这种转换是一个DC-DC converter,也称为开关电源,如同PC机的电源一样。
PWM-脉宽调制控制器是这个过程的核心。PWM按相位产生方波信号,从这个信号决定于负载电压,即其占空比正比于输出目标值(例如,50%的占空比:则一半时间输出低电位—通常是零电位,另50%的时间输出高电位—此时为即供电模块的+ 12v。
  
供电模块输出电压值必须读取来自处理器的“voltage ID” (VID) pins(人称的电压硬改),,其必须提供一个二进制代码和精确的电压值。有些主板在BIOS中允许让你手动更改CPU电压。也就是改变PWM的设置代码,随之PWM根据已被配置将改变你的CPU电压。我们正在谈论的CPU电压调节同样适用于内存和芯片组。
DC-DC converter是一个闭环系统。这意味着PWM控制器不断监测输出供电模块的输出电压。如果电压的增加或减少输出电路将调整本身(改变脉宽调制信号的频率),以便输出正确的电压。乃至顺利完成,同样,反之亦然。
图15的电路图上经常出现了CPU供电模块的PWM控制器的 (NCP5392)。你可以很容易识别的电压定义针脚(VID0 到 VID7)、回路针脚(CS,位于左侧的电流传感器针脚)和各相位输出驱动 (座落在右边G针,)。正如你所看到的,该集成电路可以控制四个相位。



图15WM控制器。
每个相位使用两个MOSFET和一个电感。PWM不能提供足够的电流开关这些MOSFET,所以每一相都需要一个MOSFET driver。通常MOSFET driver是一个小集成电路。一些厂商为了降低成本在低端主板则使用一个分立的MOSFET上做驱动用。
在图16你可以看到某一相位的基本图板(回路省略)由一个NCP5359 MOSFET驱动。EPS12V ATX12V供给MOSFET及MOSFET driver(其上所标记“10 V到13.2 V”和“4v到15 V )。在这个图中你可以看到两个MOSFET及电感电容。这个反馈信号与电感与CS+ (CSP) and CS- (CSN) pin并联。这个PWM提供这些pin和一个使能端EN以激活电路。



图16:单相简化图
正如你所看到的在图15,每个相位有一个PWM信号输出。需要解释的是,脉宽调制信号是一个脉宽(占空比)变化取决于负载电压的方波(这就是为什么这种技术被称作脉宽调制)。假设这个输出电压稳定,所有的脉宽调制信号将会有相同的脉宽,即每个方波“信号”都是相同的。然而,它们之间有一个延迟。取决于相位的交替。
例如,在一个电路时,只有两相位,这两个PWM信号将被分别运行。所以当第一相位被打开,第二相位将会被关掉,反之亦然。这将确保每一相位将50%的时间。对一个电路的脉宽调制信号的四个相位,将会同样方式将启动: 第一相位先出现,然后第二相位被激活,那么第三相,然后4相。当一个相位是打开的所有其他人都关掉。在这种情况下,每个相位将会占25%。
更多的相位,每个相位开启更少时间。如前文所讲,这使得每个MOSFET热释放减少,元件使用寿命更长。  [/hide]
使用道具 举报 回复 支持 反对
发表于 2009-7-17 13:44:37
谢谢分享。
使用道具 举报 回复 支持 反对
发表于 2009-7-18 02:46:17
提示: 作者被禁止或删除 内容自动屏蔽
使用道具 举报 回复 支持 反对
发表于 2009-7-18 10:24:29
不错,一定要看看。
使用道具 举报 回复 支持 反对
发表于 2009-7-18 16:44:26
aaaaaaaaaaaaaaaa
使用道具 举报 回复 支持 反对
发表于 2009-7-19 23:48:19
我也来看看了
使用道具 举报 回复 支持 反对
发表于 2009-7-20 11:31:27
学习了,顶顶,支持支持!!
使用道具 举报 回复 支持 反对
发表于 2009-7-20 16:42:45
路过学习
使用道具 举报 回复 支持 反对
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则